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SUMMARY

The demonstration is based upon a lemma, a theorem and the ensuing
corollary. Three particular cases are considered — the Adams, Milne and the
Simpson methods. The final formula, arrived at, was tested on a few examples

showing good agreement with the computation after introducing an "artificial'

error.
*

Let us consider a system of r ordinary differential equations
written as a single differential equation of the vector of the r- dimen~

sional space:

%%q=‘(x;Y) “)

(for the initial condition y(Xo)= Yo
We shall examine the case when the equation (1) is resolved appro-
ximately by a difference method of the type
R .3
Yn— 28¥n—s = h 2\ Bifny. @
J=1 J=0
Let us assume that the approximate solution of the equation (1)

is searched for on the segment [xo,X]; let y, be the approximate value

of the solution at the point x,=x,+ nk y(x:) is the exact solution at
— . Y7 .
the same point ‘A,=y, —y(x,); A(x) is the matrix " z;((: ' ) at the point
' . Py q=

¢ ASIMPTOTICHESKIYE OTSENKI POGRESHNOSTEY PRI CHISLENNOM INTEGRIROVANII
SISTEM OBYKNOVENNYKH DIFFERENTSIAL'NYKH URAVNENIY RAZNOSTNYMI METODAMI.



(x.¥y(x); As is the same matrix with values computed at certain intermediate
points, so that f(xa, ya) —f(xs y(xn))=AanT{.;‘;n is the error of the method, i.e.
the error at substitution of the exact solution ¥ (xy) into formula (2); ma
is the computation error by formula (2) (including the round off error);
By =Na—ps By, B,,...,Bx., are the initial errors, that is, the values of Yn—Y (%s)
in the first k singular points.

We shall also assume that all the roots of the characteristic equa-
tion

k
MY adk=i=0 (3)

J=1
do not exceed the unity by module and all of them may be simple besides per-
haps zero. We shall seek the expression for Am (m>k) by &, ..., Axy Ba,..., §,

Evidently, Bn satisfies the difference equation

r k
Au — E a]A._:I— h 2 ijn_.]Kn_j =-8-u. (4)
' J=1 J=0
We shall denote B(x) =A’(Xn—X); By=Am-s. and construct the vectors
z (¢=1,2...,r;n=0,1,..,,m—k), satisfying the homogenous difference equa-
tion x " o
zl(uo - Z a/zf."-; - th Z B,z;,”_ = 0 ()
J=1 1=

at initial conditions

(¢”® are orts of the r -dimensional space),

/z"’—jz_}‘a/z 2)—hB, Zﬁizn-/ =0 (I<n<k—1) M

Then we shall obtzin the formula:
m—k

(Am e(’)) = 2. (8,,,_,, Z ) +

m Rk
+ 2 <K.,..,.,' >z, + kB, Z‘. ﬂ/zf-'l/)

n=m-R+1 J=n—m+h J=n—mih

giving all the projections of the vector of -Km searched for.
Assuming |&,| = O(h) (0 <LIi<k), |8,,)_O(h’) we shall have by the strength

of the condition superimposed on the roots of the equation (3), ( see [11):

@)

| Am|=0 (k) (%o < xn<<X), and, assuming the existence and the continuity on the



3 £(p)
segment [xo,X] of second partial derivatives of the type 5?,,,{;;(;. we shall

obtain
| B:— B (nh) || = O (k) ©)
(in the particular case of linear system (9) is trivially fulfilled even
without these assumptions).
At observance of the inequality (9) it may be shown that the solu-
tion of the difference equation (5) may be approximated with the help of
solutions of certain differential equations. In reality, there takes place

the lemma :

LEMMA, - If lp is one of roots of the equation (3), different from
zero, ’
Epﬂ\h—l

°p=°()~ )= JL,
(s yprer (10)
J=1

u (x) is the solution of the differential equation
e

3;-=G,B(x) u, (11)
Uy = l,','u_(nh) (19)
and (9) takes place, then we have
Jzaﬂln—/ — hB, Z ﬁﬂln—l = O (h?). (13)
1

Resting on this lemma, we may demonstrate the following theorem:

THEOREM.- At initial conditions (6) and (7), the solution of the
equation (5) is expressed by the formula

!
20 = Qe \u®: 0 (nh) + O (h), (14)
where ™
x",‘ '
Tp= i (1)
Je=1

is the number of roots of the equation (3) different from zeroj; u®.9(x) is
the solution of the equation (11) at the initial condition u(0)=e®,

DEMONSTRATION,~ The solution of the difference equation (5) at
initial conditions (6) -~ (7) amounts to the solution of the same equation




at the condition (6) and 2z¥=...=20, =0 .

Expanding in the [ -th space the vector (0,0, ..., 1) by vectors
ﬂ;wdn.t.tx;ﬂl)u;==1,2“..,0{ we shall reduce the solution searched for to the
sum of the solutions z%” with initial conditionms 0;“’“em,.;.,em) with
coefficients %_and the solution for which the values in the Zero, «==1 «fh,..
— (Il —~1)-th singular points are zero and which, because of that is equal
to 0(h) at n>0.

Exemining the difference vi"" =z —\u) (nh).we obtain that the values
of V&Y at namo0, —1, ceny —-(l— 1) have the order 0 (h), so that (13)

(.9

is valid for v{*? , whence v O(h) over the entire considered segment.

Thus the theorem is demonstrated.,

COROLLARY ,~- Under the considered conditions

A1 1
Bam 3 S ls, @&, bm)+ 3 Z AL (a,., n, m) + O (M), (16)
l=m0 p =) ek =y \
where
h -
hﬁAaﬁ’
“\tpl 3 " l .
(3 )‘ =
fflj (17)

sp (v, n, m) is the solution of the vectorial linear differential equation

% = 0,A (X)Z (18)

at the point x and at initial conditions Z(xs) =V.
This corollary stems from the properties of conjugate differential
equations,

Let us pause at some particular cases,

1.~ For the Adams method (with or without reduction) the only root

Bu= 2 8 (8 n,m)+ O, (19)

namp—1

where 3, =3, (n> k)3, =4, (n<k).



2e - For the Milne method

) 8 , . 4 ’
YYo= (3 ot = los + 3 ocs)- (20)
The roots of the characteristic equation are )\ =1, Ags=—1, ,’-;==i,
N=—ho=10=~, g=0g=1 y=g=1=1=1
We have :

Ba=g2 285 Fnt, m). @)

N0 p=1

For the case when the system (1) is reduced to a single equation
d
E%-=f(x' y)!

formula (21) acquires the form:

1 m tm Xy '
Am=72 [exp(g % "">+(—1)"'-" exv(——i— S%dx>+

n=0
X
n *n

+ (im—" 4 (— fym—n) exp (-;— S %dx)] 8 + O#?). - (22)

*n

It may be seen from this formula that the Milne method is unsteady

for steady equations and systems [1]. Note that this unsteadiness takes

place only for round off errors, since, by the strength of their smoothness
the terms of the formula (21), corresponding to p== 2, 3, 4, have for the

method's errors an order O (h?)]|n|

3, -For the Simpson method
Yo—Yn—a=Hh (sfa+*/sfa-1 + /s fr-s),

o (23)
=1, M=—106=1, Oy =—g y=r1y=1/,,
m 32 B
Km = —,12—2 Z )\;'—nsp (gm n, m) + O(h’)' (24)
n=0p=1

Note that more precise formulas than, for example (24), may be also

obtained from the exact formula (8), For example, assuming

1B} = Ok (0<i<< k), |Ba|=O(hY),
we have @

-;— ) [51 Gnr n—1, m) + (—1)m"s, @n, n—1, m)] + O (h*). (25)

Km =

i
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6.

Formula (25) was tested on a few examples : an "artifical" error. 3',,
was introduced and A, was measured at M>M  the agreement of errors
with corrections computed by formula (25) was found to be gquite good.
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